a
    Of                  	   @  s   d Z ddlmZ ddlZddlmZmZ ddlZddlm	Z
 ddlmZ ddlmZ ddlmZ erdd	lmZmZmZmZmZ dd
lmZmZ eed ed d ddejdfdddddddddZeed ed d dd dddddddZdS )!z pickle compat     )annotationsN)TYPE_CHECKINGAny)pickle_compat)doc)_shared_docs)
get_handle)CompressionOptionsFilePathReadPickleBufferStorageOptionsWriteBuffer)	DataFrameSeriesstorage_optionscompression_optionsfilepath_or_buffer)r   r   inferr   zFilePath | WriteBuffer[bytes]r	   intzStorageOptions | NoneNone)objr   compressionprotocolr   returnc                 C  sV   |dk rt j}t|d|d|d"}t j| |j|d W d   n1 sH0    Y  dS )a9  
    Pickle (serialize) object to file.

    Parameters
    ----------
    obj : any object
        Any python object.
    filepath_or_buffer : str, path object, or file-like object
        String, path object (implementing ``os.PathLike[str]``), or file-like
        object implementing a binary ``write()`` function.
        Also accepts URL. URL has to be of S3 or GCS.
    {compression_options}

        .. versionchanged:: 1.4.0 Zstandard support.

    protocol : int
        Int which indicates which protocol should be used by the pickler,
        default HIGHEST_PROTOCOL (see [1], paragraph 12.1.2). The possible
        values for this parameter depend on the version of Python. For Python
        2.x, possible values are 0, 1, 2. For Python>=3.0, 3 is a valid value.
        For Python >= 3.4, 4 is a valid value. A negative value for the
        protocol parameter is equivalent to setting its value to
        HIGHEST_PROTOCOL.

    {storage_options}

        .. [1] https://docs.python.org/3/library/pickle.html

    See Also
    --------
    read_pickle : Load pickled pandas object (or any object) from file.
    DataFrame.to_hdf : Write DataFrame to an HDF5 file.
    DataFrame.to_sql : Write DataFrame to a SQL database.
    DataFrame.to_parquet : Write a DataFrame to the binary parquet format.

    Examples
    --------
    >>> original_df = pd.DataFrame({{"foo": range(5), "bar": range(5, 10)}})  # doctest: +SKIP
    >>> original_df  # doctest: +SKIP
       foo  bar
    0    0    5
    1    1    6
    2    2    7
    3    3    8
    4    4    9
    >>> pd.to_pickle(original_df, "./dummy.pkl")  # doctest: +SKIP

    >>> unpickled_df = pd.read_pickle("./dummy.pkl")  # doctest: +SKIP
    >>> unpickled_df  # doctest: +SKIP
       foo  bar
    0    0    5
    1    1    6
    2    2    7
    3    3    8
    4    4    9
    r   wbFr   Zis_textr   )r   N)pickleHIGHEST_PROTOCOLr   dumphandle)r   r   r   r   r   handles r!   I/var/www/ai-form-bot/venv/lib/python3.9/site-packages/pandas/io/pickle.py	to_pickle!   s    Cr#   decompression_options)r   r$   zFilePath | ReadPickleBufferzDataFrame | Series)r   r   r   r   c              	   C  s  t tttf}t| d|d|d}zzZtjdd: tdt t	
|jW  d   W W W  d   S 1 sp0    Y  W n2 |y   tj
|jdd Y W W  d   S 0 W n0 ty   tj
|jd	d Y W  d   S 0 W d   n1  s0    Y  dS )
a  
    Load pickled pandas object (or any object) from file.

    .. warning::

       Loading pickled data received from untrusted sources can be
       unsafe. See `here <https://docs.python.org/3/library/pickle.html>`__.

    Parameters
    ----------
    filepath_or_buffer : str, path object, or file-like object
        String, path object (implementing ``os.PathLike[str]``), or file-like
        object implementing a binary ``readlines()`` function.
        Also accepts URL. URL is not limited to S3 and GCS.

    {decompression_options}

        .. versionchanged:: 1.4.0 Zstandard support.

    {storage_options}

    Returns
    -------
    same type as object stored in file

    See Also
    --------
    DataFrame.to_pickle : Pickle (serialize) DataFrame object to file.
    Series.to_pickle : Pickle (serialize) Series object to file.
    read_hdf : Read HDF5 file into a DataFrame.
    read_sql : Read SQL query or database table into a DataFrame.
    read_parquet : Load a parquet object, returning a DataFrame.

    Notes
    -----
    read_pickle is only guaranteed to be backwards compatible to pandas 0.20.3
    provided the object was serialized with to_pickle.

    Examples
    --------
    >>> original_df = pd.DataFrame(
    ...     {{"foo": range(5), "bar": range(5, 10)}}
    ...    )  # doctest: +SKIP
    >>> original_df  # doctest: +SKIP
       foo  bar
    0    0    5
    1    1    6
    2    2    7
    3    3    8
    4    4    9
    >>> pd.to_pickle(original_df, "./dummy.pkl")  # doctest: +SKIP

    >>> unpickled_df = pd.read_pickle("./dummy.pkl")  # doctest: +SKIP
    >>> unpickled_df  # doctest: +SKIP
       foo  bar
    0    0    5
    1    1    6
    2    2    7
    3    3    8
    4    4    9
    rbFr   T)recordignoreN)encodingzlatin-1)AttributeErrorImportErrorModuleNotFoundError	TypeErrorr   warningscatch_warningssimplefilterWarningr   loadr   pcUnicodeDecodeError)r   r   r   Zexcs_to_catchr    r!   r!   r"   read_pickler   s$    F@*r4   )r   N)__doc__
__future__r   r   typingr   r   r-   Zpandas.compatr   r2   Zpandas.util._decoratorsr   Zpandas.core.shared_docsr   Zpandas.io.commonr   Zpandas._typingr	   r
   r   r   r   Zpandasr   r   r   r#   r4   r!   r!   r!   r"   <module>   s4   
M
  