a
    OfƉ                     @  s  d Z ddlmZ ddlmZ ddlmZmZmZm	Z	m
Z
 ddlZddlmZmZmZ ddlmZmZmZmZmZ ddlmZ dd	lmZ dd
lmZmZmZmZm Z m!Z! ddl"m#Z# ddl$m%Z%m&Z&m'Z' erddl(m)Z) dddddZ*dddddZ+e
ddddddddZ,e
dd d!dd"dZ,d#ddd$d!dd%dZ,g d&Z-g d'Z.d(d)d(d*d+d,Z/d(dd-d.d/d0Z0d(d1d2d3d4Z1d5d6d7d8d9Z2d:d(d;d<d=d>Z3d)d)d?d@dAZ4ddDd)dEd(d-d(d5dFdGdH	dIdJZ5d)d(dDdKdLdMZ6ddDdDd(d-d(d6dFd$d-dGdN
dOdPZ7ddDdDdDd(d$dQdRdSZ8ddDdDdDdTd$dUdVdWZ9ddDdDdDdTdEdXdYdZZ:ddDdDdDdEd\d]d^d_Z;dDdd-d`dGdadbdcZ<ddDddEd-d6dGdedfdgZ=ddhddidjdkZ>dldldmdndoZ?e?ddDd-d6dhdpdqdrdsZ@e?ddDd-d6dhdpdqdtduZAe?ddDd-d6dhdvdwdxZBe?dd-d6dhdydzd{ZCdd|dGd}d~dZDdd|dGd}ddZEe@eAdZFdddddZGddddZHdd-d-dddZIddddddZJdS )z$
Routines for filling missing data.
    )annotations)wraps)TYPE_CHECKINGAnyLiteralcastoverloadN)NaTalgoslib)	ArrayLikeAxisIntFReindexMethodnpt)import_optional_dependency)infer_dtype_from)is_array_likeis_bool_dtypeis_numeric_dtypeis_numeric_v_string_likeis_object_dtypeneeds_i8_conversion)DatetimeTZDtype)is_valid_na_for_dtypeisnana_value_for_dtypeIndexznpt.NDArray[np.bool_]int)masklengthc                 C  s8   t | r4t| |kr,tdt|  d| | | } | S )zJ
    Validate the size of the values passed to ExtensionArray.fillna.
    z'Length of 'value' does not match. Got (z)  expected )r   len
ValueError)valuer    r!    r%   L/var/www/ai-form-bot/venv/lib/python3.9/site-packages/pandas/core/missing.pycheck_value_size3   s    r'   r   )arrreturnc                 C  sT  t |\}}t|tjr(tj||d}n(| }t|s@|g}|j||dd}d}t	| jrld}t
|  }t
|}||  }tj| jtd}t| jrt| jst|jrnt| jrt|jrt|jsnl|D ]f}	t| |	rq|rtj| jtjd}
| | |	k|
|< n$| |	k}
t|
tjs0|
jtdd}
||
O }q| rP|t
| O }|S )a	  
    Return a masking array of same size/shape as arr
    with entries equaling any member of values_to_mask set to True

    Parameters
    ----------
    arr : ArrayLike
    values_to_mask: list, tuple, or scalar

    Returns
    -------
    np.ndarray[bool]
    )dtypeF)r*   copyT)r*   Zna_value)r   
isinstancenpr*   arrayZconstruct_array_typer   Zis_list_likeZ_from_sequencer   r   Zzerosshapeboolr   r   r   Zbool_ndarrayZto_numpyany)r(   Zvalues_to_maskr*   clsZpotential_naZarr_maskZna_maskZnonnar    xZnew_maskr%   r%   r&   mask_missingB   sR    






r5   .allow_nearestz,Literal['ffill', 'pad', 'bfill', 'backfill']zLiteral[False]zLiteral['pad', 'backfill'])methodr7   r)   c                C  s   d S Nr%   r8   r7   r%   r%   r&   clean_fill_method   s    r;   z7Literal['ffill', 'pad', 'bfill', 'backfill', 'nearest']zLiteral[True]z%Literal['pad', 'backfill', 'nearest']c                C  s   d S r9   r%   r:   r%   r%   r&   r;      s    Fr0   c                C  sj   t | tr,|  } | dkr d} n| dkr,d} ddg}d}|rJ|d d}| |vrftd| d	|  | S )
Nffillpadbfillbackfillzpad (ffill) or backfill (bfill)nearestz(pad (ffill), backfill (bfill) or nearestzInvalid fill method. Expecting z. Got )r,   strlowerappendr#   )r8   r7   Zvalid_methodsZ	expectingr%   r%   r&   r;      s    

)lineartimeindexvalues)r@   zeroslinear	quadraticcubicbarycentrickroghspline
polynomialfrom_derivativespiecewise_polynomialpchipakimacubicsplinerA   r   )r8   rF   r)   c                 K  sh   | d}| dv r"|d u r"tdtt }| |vrHtd| d|  d| dv rd|jsdt|  d| S )	Norder)rN   rO   z7You must specify the order of the spline or polynomial.zmethod must be one of z. Got 'z
' instead.)rM   rQ   rR   z4 interpolation requires that the index be monotonic.)getr#   
NP_METHODS
SP_METHODSZis_monotonic_increasing)r8   rF   kwargsrU   validr%   r%   r&   clean_interp_method   s    
r[   
int | None)howis_validr)   c                 C  s   | dv sJ t |dkrdS |jdkr2|jdd}| dkrL|dd  }n&| dkrrt |d |ddd	   }|| }|sdS |S )
a+  
    Retrieves the positional index of the first valid value.

    Parameters
    ----------
    how : {'first', 'last'}
        Use this parameter to change between the first or last valid index.
    is_valid: np.ndarray
        Mask to find na_values.

    Returns
    -------
    int or None
    )firstlastr   N      axisr_   r`   )r"   ndimr2   argmax)r]   r^   ZidxposZ	chk_notnar%   r%   r&   find_valid_index   s    
rh   z&Literal['forward', 'backward', 'both'])limit_directionr)   c                 C  s2   g d}|   } | |vr.td| d|  d| S )N)forwardbackwardZbothz*Invalid limit_direction: expecting one of z, got 'z'.rB   r#   )ri   Zvalid_limit_directionsr%   r%   r&   validate_limit_direction  s    rm   z
str | None#Literal['inside', 'outside'] | None)
limit_arear)   c                 C  s:   | d ur6ddg}|   } | |vr6td| d|  d| S )Ninsideoutsidez%Invalid limit_area: expecting one of z, got .rl   )ro   Zvalid_limit_areasr%   r%   r&   validate_limit_area  s    rs   z-Literal['backward', 'forward', 'both'] | Nonez&Literal['backward', 'forward', 'both'])ri   r8   r)   c                 C  s`   | d u r|dv rd} q\d} n@|dv r<| dkr<t d| d|dv r\| dkr\t d| d| S )N)r?   r>   rk   rj   )r=   r<   z0`limit_direction` must be 'forward' for method ``z1`limit_direction` must be 'backward' for method `)r#   )ri   r8   r%   r%   r&   infer_limit_direction#  s    

ru   )rF   r)   c                 C  s   | dkr(ddl m} |tt|}nHh d}t|jpRt|jtpRt	
|jd}| |vrp|sptd|  dt| rtd|S )	NrD   r   r   >   rG   rF   r@   rE   mMz9Index column must be numeric or datetime type when using z_ method other than linear. Try setting a numeric or datetime index column before interpolating.zkInterpolation with NaNs in the index has not been implemented. Try filling those NaNs before interpolating.)pandasr   r-   Zaranger"   r   r*   r,   r   r   Zis_np_dtyper#   r   r2   NotImplementedError)r8   rF   r   methodsZis_numeric_or_datetimer%   r%   r&   get_interp_index8  s(    

rz   rD   rj   
np.ndarrayr   z
Any | NoneNone)	datarF   rd   r8   limitri   ro   
fill_valuer)   c	              	     s   t |fi  t | jr,t| jdd dkrJt|jsFtddtt|tj	ddt
|dd	d
 fdd}
t|
||  dS )z
    Column-wise application of _interpolate_1d.

    Notes
    -----
    Alters 'data' in-place.

    The signature does differ from _interpolate_1d because it only
    includes what is needed for Block.interpolate.
    F)compatrE   zStime-weighted interpolation only works on Series or DataFrames with a DatetimeIndexrG   N)Znobsr~   r{   r|   )yvaluesr)   c                   s&   t f |  dd	 d S )NF)	indicesr   r8   r~   ri   ro   r   bounds_errorr    )_interpolate_1d)r   r   r   rY   r~   Zlimit_area_validatedri   r    r8   r%   r&   func  s    
z$interpolate_2d_inplace.<locals>.func)r[   r   r*   r   r   r#   rm   rs   r
   Zvalidate_limit_index_to_interp_indicesr-   Zapply_along_axis)r}   rF   rd   r8   r~   ri   ro   r   r    rY   r   r%   r   r&   interpolate_2d_inplaceW  s    

"r   )rF   r8   r)   c                 C  s`   | j }t|jr|d}|dkr4|}ttj|}n(t|}|dv r\|jtjkr\t	
|}|S )zE
    Convert Index to ndarray of indices to pass to NumPy/SciPy.
    i8rD   )rG   rF   )Z_valuesr   r*   viewr   r-   r1   asarrayZobject_r   Zmaybe_convert_objects)rF   r8   ZxarrZindsr%   r%   r&   r     s    



r   )
r   r   r8   r~   ri   ro   r   r   rU   r)   c
                 K  s  |	dur|	}nt |}| }| s(dS | r4dS tt|}td|d}|du rZd}tt|}td|d}|du rt|}ttd| t|}|dkr|tt	||dB }n.|dkr|tt	|d|B }ntt	|||}|d	kr|||B O }n|d
kr|| | }||O }t
|}|jjdv }|r<|d}|tv r|t| | }t| | | | | || | ||< n.t| | || | | f||||d|
||< |	durd|	dd< d|	|< n|rtj||< n
tj||< dS )a  
    Logic for the 1-d interpolation.  The input
    indices and yvalues will each be 1-d arrays of the same length.

    Bounds_error is currently hardcoded to False since non-scipy ones don't
    take it as an argument.

    Notes
    -----
    Fills 'yvalues' in-place.
    Nr_   r]   r^   r   r`   rb   rj   rk   rp   rq   rv   r   )r8   r   r   rU   FT)r   r2   allsetr-   Zflatnonzerorh   ranger"   _interp_limitsortedr*   kindr   rW   Zargsortinterp_interpolate_scipy_wrapperr	   r$   nan)r   r   r8   r~   ri   ro   r   r   rU   r    rY   invalidrZ   Zall_nansZfirst_valid_indexZ
start_nansZlast_valid_indexZend_nansZpreserve_nansZmid_nansZis_datetimelikeZindexerr%   r%   r&   r     sn    







r   )r4   ynew_xr8   r   c                 K  s  | d}t d|d ddlm}	 t|}|	j|	jtttt	|	j
d}
g d}||v r|dkrd|}n|}|	j| ||||d	}||}n|d
krt|s|dkrtd| |	j| |fd|i|}||}nL| jjs|  } |jjs| }|jjs| }|
| }|| ||fi |}|S )z
    Passed off to scipy.interpolate.interp1d. method is scipy's kind.
    Returns an array interpolated at new_x.  Add any new methods to
    the list in _clean_interp_method.
    z interpolation requires SciPy.scipy)extrar   interpolate)rL   rM   rP   rQ   rT   rS   rR   )r@   rH   rI   rJ   rK   rO   rO   )r   r   r   rN   z;order needs to be specified and greater than 0; got order: k)r   r   r   r-   r   Zbarycentric_interpolateZkrogh_interpolate_from_derivatives_cubicspline_interpolate_akima_interpolateZpchip_interpolateZinterp1dr   r#   ZUnivariateSplineflagsZ	writeabler+   )r4   r   r   r8   r   r   rU   rY   r   r   Zalt_methodsZinterp1d_methodsr   ZterpZnew_yr%   r%   r&   r   %  sJ    





r   zint | list[int] | None)xiyir4   derextrapolatec           	      C  s4   ddl m} |jj}|| |dd||d}||S )a  
    Convenience function for interpolate.BPoly.from_derivatives.

    Construct a piecewise polynomial in the Bernstein basis, compatible
    with the specified values and derivatives at breakpoints.

    Parameters
    ----------
    xi : array-like
        sorted 1D array of x-coordinates
    yi : array-like or list of array-likes
        yi[i][j] is the j-th derivative known at xi[i]
    order: None or int or array-like of ints. Default: None.
        Specifies the degree of local polynomials. If not None, some
        derivatives are ignored.
    der : int or list
        How many derivatives to extract; None for all potentially nonzero
        derivatives (that is a number equal to the number of points), or a
        list of derivatives to extract. This number includes the function
        value as 0th derivative.
     extrapolate : bool, optional
        Whether to extrapolate to ouf-of-bounds points based on first and last
        intervals, or to return NaNs. Default: True.

    See Also
    --------
    scipy.interpolate.BPoly.from_derivatives

    Returns
    -------
    y : scalar or array-like
        The result, of length R or length M or M by R.
    r   r   re   rb   )Zordersr   )r   r   ZBPolyrP   reshape)	r   r   r4   rU   r   r   r   r8   mr%   r%   r&   r   l  s    )r   )r   r   r4   r   rd   c                 C  s(   ddl m} |j| ||d}|||dS )aQ  
    Convenience function for akima interpolation.
    xi and yi are arrays of values used to approximate some function f,
    with ``yi = f(xi)``.

    See `Akima1DInterpolator` for details.

    Parameters
    ----------
    xi : np.ndarray
        A sorted list of x-coordinates, of length N.
    yi : np.ndarray
        A 1-D array of real values.  `yi`'s length along the interpolation
        axis must be equal to the length of `xi`. If N-D array, use axis
        parameter to select correct axis.
    x : np.ndarray
        Of length M.
    der : int, optional
        How many derivatives to extract; None for all potentially
        nonzero derivatives (that is a number equal to the number
        of points), or a list of derivatives to extract. This number
        includes the function value as 0th derivative.
    axis : int, optional
        Axis in the yi array corresponding to the x-coordinate values.

    See Also
    --------
    scipy.interpolate.Akima1DInterpolator

    Returns
    -------
    y : scalar or array-like
        The result, of length R or length M or M by R,

    r   r   rc   )nu)r   r   ZAkima1DInterpolator)r   r   r4   r   rd   r   Pr%   r%   r&   r     s    *r   
not-a-knotzstr | tuple[Any, Any])r   r   r4   rd   bc_typec                 C  s(   ddl m} |j| ||||d}||S )ag  
    Convenience function for cubic spline data interpolator.

    See `scipy.interpolate.CubicSpline` for details.

    Parameters
    ----------
    xi : np.ndarray, shape (n,)
        1-d array containing values of the independent variable.
        Values must be real, finite and in strictly increasing order.
    yi : np.ndarray
        Array containing values of the dependent variable. It can have
        arbitrary number of dimensions, but the length along ``axis``
        (see below) must match the length of ``x``. Values must be finite.
    x : np.ndarray, shape (m,)
    axis : int, optional
        Axis along which `y` is assumed to be varying. Meaning that for
        ``x[i]`` the corresponding values are ``np.take(y, i, axis=axis)``.
        Default is 0.
    bc_type : string or 2-tuple, optional
        Boundary condition type. Two additional equations, given by the
        boundary conditions, are required to determine all coefficients of
        polynomials on each segment [2]_.
        If `bc_type` is a string, then the specified condition will be applied
        at both ends of a spline. Available conditions are:
        * 'not-a-knot' (default): The first and second segment at a curve end
          are the same polynomial. It is a good default when there is no
          information on boundary conditions.
        * 'periodic': The interpolated functions is assumed to be periodic
          of period ``x[-1] - x[0]``. The first and last value of `y` must be
          identical: ``y[0] == y[-1]``. This boundary condition will result in
          ``y'[0] == y'[-1]`` and ``y''[0] == y''[-1]``.
        * 'clamped': The first derivative at curves ends are zero. Assuming
          a 1D `y`, ``bc_type=((1, 0.0), (1, 0.0))`` is the same condition.
        * 'natural': The second derivative at curve ends are zero. Assuming
          a 1D `y`, ``bc_type=((2, 0.0), (2, 0.0))`` is the same condition.
        If `bc_type` is a 2-tuple, the first and the second value will be
        applied at the curve start and end respectively. The tuple values can
        be one of the previously mentioned strings (except 'periodic') or a
        tuple `(order, deriv_values)` allowing to specify arbitrary
        derivatives at curve ends:
        * `order`: the derivative order, 1 or 2.
        * `deriv_value`: array-like containing derivative values, shape must
          be the same as `y`, excluding ``axis`` dimension. For example, if
          `y` is 1D, then `deriv_value` must be a scalar. If `y` is 3D with
          the shape (n0, n1, n2) and axis=2, then `deriv_value` must be 2D
          and have the shape (n0, n1).
    extrapolate : {bool, 'periodic', None}, optional
        If bool, determines whether to extrapolate to out-of-bounds points
        based on first and last intervals, or to return NaNs. If 'periodic',
        periodic extrapolation is used. If None (default), ``extrapolate`` is
        set to 'periodic' for ``bc_type='periodic'`` and to True otherwise.

    See Also
    --------
    scipy.interpolate.CubicHermiteSpline

    Returns
    -------
    y : scalar or array-like
        The result, of shape (m,)

    References
    ----------
    .. [1] `Cubic Spline Interpolation
            <https://en.wikiversity.org/wiki/Cubic_Spline_Interpolation>`_
            on Wikiversity.
    .. [2] Carl de Boor, "A Practical Guide to Splines", Springer-Verlag, 1978.
    r   r   )rd   r   r   )r   r   ZCubicSpline)r   r   r4   rd   r   r   r   r   r%   r%   r&   r     s
    M
r   zLiteral['inside', 'outside'])rG   r8   r~   ro   r)   c                 C  s   t | }| }| std|d}|du r.d}td|d}|du rJt| }t| |||d |dkrtd|||d	 < n.|d
krd |d|< ||d	 d< ntdtj| |< dS )a  
    Apply interpolation and limit_area logic to values along a to-be-specified axis.

    Parameters
    ----------
    values: np.ndarray
        Input array.
    method: str
        Interpolation method. Could be "bfill" or "pad"
    limit: int, optional
        Index limit on interpolation.
    limit_area: {'inside', 'outside'}
        Limit area for interpolation.

    Notes
    -----
    Modifies values in-place.
    r_   r   Nr   r`   )r8   r~   ro   rp   Frb   rq   z*limit_area should be 'inside' or 'outside')r   r   rh   r"   pad_or_backfill_inplacer#   r-   r   )rG   r8   r~   ro   r   r^   r_   r`   r%   r%   r&   _interpolate_with_limit_area%  s*    r   r=   )rG   r8   rd   r~   ro   r)   c                 C  st   |dkrdd ndd }| j dkrF|dkr2td| td| j } t|}|| }t|dd	}||||d
 dS )a  
    Perform an actual interpolation of values, values will be make 2-d if
    needed fills inplace, returns the result.

    Parameters
    ----------
    values: np.ndarray
        Input array.
    method: str, default "pad"
        Interpolation method. Could be "bfill" or "pad"
    axis: 0 or 1
        Interpolation axis
    limit: int, optional
        Index limit on interpolation.
    limit_area: str, optional
        Limit area for interpolation. Can be "inside" or "outside"

    Notes
    -----
    Modifies values in-place.
    r   c                 S  s   | S r9   r%   r4   r%   r%   r&   <lambda>v      z)pad_or_backfill_inplace.<locals>.<lambda>c                 S  s   | j S r9   )Tr   r%   r%   r&   r   v  r   rb   z0cannot interpolate on a ndim == 1 with axis != 0)rb   ra   rf   r~   ro   N)rf   AssertionErrorr   tupler/   r;   get_fill_func)rG   r8   rd   r~   ro   ZtransfZtvaluesr   r%   r%   r&   r   Z  s    
r   znpt.NDArray[np.bool_] | None)r    r)   c                 C  s   |d u rt | }|S r9   )r   )rG   r    r%   r%   r&   _fillna_prep  s    r   r   )r   r)   c                   s(   t  dddd fdd}tt|S )z>
    Wrapper to handle datetime64 and timedelta64 dtypes.
    Nr\   rn   r   c                   sT   t | jrD|d u rt| } | d|||d\}}|| j|fS  | |||dS )Nr   r~   ro   r    )r   r*   r   r   )rG   r~   ro   r    resultr   r%   r&   new_func  s    

z&_datetimelike_compat.<locals>.new_func)NNN)r   r   r   )r   r   r%   r   r&   _datetimelike_compat  s       r   z(tuple[np.ndarray, npt.NDArray[np.bool_]])rG   r~   ro   r    r)   c                 C  s<   t | |}|d ur$| s$t|| tj| ||d | |fS Nr~   )r   r   _fill_limit_area_1dr
   Zpad_inplacerG   r~   ro   r    r%   r%   r&   _pad_1d  s
    

r   c                 C  s<   t | |}|d ur$| s$t|| tj| ||d | |fS r   )r   r   r   r
   Zbackfill_inplacer   r%   r%   r&   _backfill_1d  s
    

r   r   c                 C  s<   t | |}|d urt|| | jr4tj| ||d n | |fS r   )r   _fill_limit_area_2dsizer
   Zpad_2d_inplacer   r%   r%   r&   _pad_2d  s    

r   r   c                 C  s<   t | |}|d urt|| | jr4tj| ||d n | |fS r   )r   r   r   r
   Zbackfill_2d_inplacer   r%   r%   r&   _backfill_2d  s    

r   zLiteral['outside', 'inside'])r    ro   r)   c                 C  sn   |  }|  }t||ddd    d }|dkrRd| d|< d| |d d< n|dkrjd| |d |< dS )a  Prepare 1d mask for ffill/bfill with limit_area.

    Caller is responsible for checking at least one value of mask is False.
    When called, mask will no longer faithfully represent when
    the corresponding are NA or not.

    Parameters
    ----------
    mask : np.ndarray[bool, ndim=1]
        Mask representing NA values when filling.
    limit_area : { "outside", "inside" }
        Whether to limit filling to outside or inside the outer most non-NA value.
    Nre   rb   rp   Frq   )rg   r"   )r    ro   neg_maskr_   r`   r%   r%   r&   r     s    r   c                 C  s   | j  }|dkrFtjj|ddtjj|ddd ddddd @ }n8tjj|dd tjj|ddd ddddd  B }d| |j < dS )a  Prepare 2d mask for ffill/bfill with limit_area.

    When called, mask will no longer faithfully represent when
    the corresponding are NA or not.

    Parameters
    ----------
    mask : np.ndarray[bool, ndim=1]
        Mask representing NA values when filling.
    limit_area : { "outside", "inside" }
        Whether to limit filling to outside or inside the outer most non-NA value.
    rq   r   rc   Nre   F)r   r-   maximum
accumulate)r    ro   r   Zla_maskr%   r%   r&   r     s    "$r   r=   r?   rb   r   c                 C  s&   t | } |dkrt|  S ttd|  S )Nrb   r   )r;   _fill_methodsr   r   )r8   rf   r%   r%   r&   r   *  s    r   zReindexMethod | None)r)   c                 C  s   | d u rd S t | ddS )NTr6   )r;   )r8   r%   r%   r&   clean_reindex_fill_method1  s    r   )r   fw_limitbw_limitc                   s   t |  t }t }dd fdd}|durT|dkrJtt| d }n
|| |}|dur|dkrh|S t|| ddd |}t d t| }|dkr|S ||@ S )	ak  
    Get indexers of values that won't be filled
    because they exceed the limits.

    Parameters
    ----------
    invalid : np.ndarray[bool]
    fw_limit : int or None
        forward limit to index
    bw_limit : int or None
        backward limit to index

    Returns
    -------
    set of indexers

    Notes
    -----
    This is equivalent to the more readable, but slower

    .. code-block:: python

        def _interp_limit(invalid, fw_limit, bw_limit):
            for x in np.where(invalid)[0]:
                if invalid[max(0, x - fw_limit):x + bw_limit + 1].all():
                    yield x
    r   r   c                   s`   t | }t| |d d}tt|d | tt| d |d    dkd B }|S )Nrb   r   )min_rolling_windowr   r   r-   whereZcumsum)r   r~   ZwindowedidxNr%   r&   inner\  s    
"z_interp_limit.<locals>.innerNr   re   rb   )r"   r   r-   r   listr   )r   r   r   Zf_idxZb_idxr   Z	b_idx_invr%   r   r&   r   7  s     !
r   )awindowr)   c                 C  sJ   | j dd | j d | d |f }| j| jd f }tjjj| ||dS )z
    [True, True, False, True, False], 2 ->

    [
        [True,  True],
        [True, False],
        [False, True],
        [True, False],
    ]
    Nre   rb   )r/   strides)r/   r   r-   r   Zstride_tricksZ
as_strided)r   r   r/   r   r%   r%   r&   r   x  s    $r   )rD   Nrj   NNN)rD   Nrj   NNFNN)NFN)Nr   F)r   r   )r   r   N)r=   r   NN)N)NNN)NNN)NNN)NNN)rb   )K__doc__
__future__r   	functoolsr   typingr   r   r   r   r   numpyr-   Zpandas._libsr	   r
   r   Zpandas._typingr   r   r   r   r   Zpandas.compat._optionalr   Zpandas.core.dtypes.castr   Zpandas.core.dtypes.commonr   r   r   r   r   r   Zpandas.core.dtypes.dtypesr   Zpandas.core.dtypes.missingr   r   r   rw   r   r'   r5   r;   rW   rX   r[   rh   rm   rs   ru   rz   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r%   r%   r%   r&   <module>   s    I&#       F        "w   K   6  5   V7    -             
A