a
    Lf                  7   @   sz   d Z dddddddddd	d
dddddddddddddddd	d	dd	dddddddd d!d"d#d$d%d&d&d'd(d)d*d+d,d-d.d/d06Zd1S )2zt
Dict of expired attributes that are discontinued since 2.0 release.
Each item is associated with a migration note.
z,Use the np.errstate context manager instead.z+Use `np.asarray(arr, dtype=dtype)` instead.z Use `inspect.getsource` instead.z&Search NumPy's documentation directly.z3Use an IDE variable explorer or `locals()` instead.zUse `arr.T.copy()` instead.zFor the general case, use `PyUFunc_ReplaceLoopBySignature`. For ndarray subclasses, define the ``__array_ufunc__`` method and override the relevant ufunc.zUse `-np.inf` instead.zUse `np.inf` instead.zUse `-0.0` instead.zUse `0.0` instead.z,It's still available as `np.lib.add_newdoc`.z/It's still available as `np.lib.add_docstring`.z9It's an internal function and doesn't have a replacement.z;There's no replacement, as Python 2 is no longer supported.zUse `ast.literal_eval` instead.zUse `np.float64` instead.zUse `np.complex128` instead.zUse `np.longdouble` instead.zUse `np.complex64` instead.zUse `np.clongdouble` instead.zUse `np.bytes_` instead.zUse `np.str_` instead.zUse `np.nan` instead.z*Use `issubclass(rep, np.generic)` instead.zUse a specific dtype instead. You should avoid relying on any implicit mechanism and select the largest dtype of a kind explicitly in the code.z!Use `np.dtype(obj).type` instead.z!Use `np.dtype(obj).char` instead.z!Access dtypes explicitly instead.zUse `np.issubdtype` instead.zXUse `np.set_printoptions` instead with a formatter for custom printing of NumPy objects.z-Use `np.asarray` with a proper dtype instead.z!Use `issubclass` builtin instead.z!It's now available from `np.lib`.zUse `np.asmatrix` instead.z1Use `np.genfromtxt` with comma delimiter instead.zUse `np.genfromtxt` instead.zTEmit `DeprecationWarning` with `warnings.warn` directly, or use `typing.deprecated`.z'Use your own printing function instead.zUse `numpy.promote_types` or `numpy.result_type` instead. To achieve semantics for the `scalar_types` argument, use `numpy.result_type` and pass the Python values `0`, `0.0`, or `0j`.zUse `np.round` instead. z2It's still available as `np.lib.npyio.DataSource`.z)Use `np.dtype(<dtype>).itemsize` instead.z9Now it's available under `np.lib.array_utils.byte_bounds`z5It's still available as `np.char.compare_chararrays`.z/It's still available as `np.rec.format_parser`.)6Z	geterrobjZ	seterrobjcastsourceZlookforZwhoZfastCopyAndTransposeZset_numeric_opsZNINFZPINFZNZEROZPZEROZ
add_newdocZadd_docstringZadd_newdoc_ufunccompatZ	safe_evalZfloat_Zcomplex_Z	longfloatZsinglecomplexZcfloatZlongcomplexZ
clongfloatZstring_Zunicode_ZInfInfinityNaNZinftyZissctypeZmaximum_sctypeZ
obj2sctypeZsctype2charZsctypesZissubsctypeZset_string_functionZasfarrayZissubclass_Ztracemalloc_domainZmatZ
recfromcsvZ
recfromtxtZ	deprecateZdeprecate_with_docZdispZfind_common_typeZround_Zget_array_wrapZ
DataSourcenbytesZbyte_boundsZcompare_chararraysZformat_parserN)__doc__Z__expired_attributes__ r	   r	   Q/var/www/ai-form-bot/venv/lib/python3.9/site-packages/numpy/_expired_attrs_2_0.py<module>   sn   